Software Tools for Automatically Detecting, Measuring and Classifying Animal Sounds

Raimund Specht

Avisoft Bioacoustics, Berlin, Germany, www.avisoft.com

INTRODUCTION

Many bioacoustic investigations involve the analysis of large amounts of sound recordings. Reviewing these files manually is often both extremely time-consuming and subject to making mistakes that result from the monotony of that procedure. It is therefore desired to have tools that automate this process.

Avisoft Bioacoustics has been working on software tools that accomplish this goal. There are several approaches that are suitable for various analysis requirements. This poster describes the currently available options.

SPECTROGRAM ANALYSIS

2. Spectrogram-based analysis of both time and frequency

2.1 Automatic parameter measurements for collecting various time and frequency parameters on automatically detected events with optional subsequent multi-parametric classification Secondary analysis options include group analysis (for characterizing series of sound elements or pulses that are separated by significant breaks) and statistics on the acquired measurements.

Depending on the quality of the sound recordings and the structure of the vocalizations, the implemented automatic analysis tools might not always work satisfying. It is therefore possible to edit the automatically determined results or to run the analysis in a semi-automatic way.

There are tools that are applied either directly to the waveform or to the spectrographic representation of the sound:

WAVEFORM ANALYSIS

- 1. Waveform-based analysis of temporal patterns (pulse train analysis)
- 1.1 Separation by simple (absolute) amplitude threshold comparisons (gate function)

This tool first detects the sound elements (syllables) on the spectrogram and then logs up the selected parameters.

The element detection threshold can be adjusted interactively.

Manually erasing disturbing noise enables automated measurements in noisy recordings.

There are a few alternative approaches for scanning simple (more or less pure-tone) sound elements.

SYLLABLE CLASSIFICATION

The acquired time and frequency parameters can futher be used to identify element types.

Spectrogram 1 (C:\C700\SONA2\DATA\FIT.WAV)	Classification settings	×
File Display Tools WavFile ?	Method : Class : A	
N=256 F=100 O=50 FLT III III III III III III III III III I	add class rename delete Help	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Location : start	

#	Group	Time	Time rel.	Duration	Interval	Amplitude	^	Pulses Copy	Update!
1	1:1	0.16145	0	0.01473		0.545074	-	count : 51	
2	1:2	0.18950	0.02805	0.01612	0.028	0.671997		rate : 13.53 Hz	Help
3	1:3	0.22079	0.05934	0.01634	0.031	0.734406		on : 0.8061 s	
4	2:1	0.35510	0	0.01501	0.134	0.595276		on : 21.745 %	
5	2:2	0.38392	0.02882	0.01655	0.028	0.705505	CONTRACTOR OF		
6	2:3	0.41596	0.06086	0.01607	0.032	0.747772	*	Copy Legend	
<						innasasa 🔊 🔊		Save Label	
# 1 2 3 4 5 6	Time 0.161 0.355 0.585 0.814 1.034 1.301	Pulses 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Pulse rate 39.6345 38.9920 39.4101 39.0957 40.0302 39.3750	Duration 0.07569 0.07693 0.07612 0.07673 0.07494 0.07619	Interval 0.193 0.230 0.228 0.220 0.267	Amplitude 0.73440 0.74777 0.75149 0.74295 0.76269 0.75622		Groups <u>Copy</u> count : 17 rate : 4.401 Hz Copy Legend	Post filter enable hold time 1 m min dur. :
	1.513	3	38.8546	0.07721	0.211	0.74746	-	Save Label	0 m

1.2 Separation by adaptive (relative) amplitude threshold comparisons

The advantage of this separation mode is its ability to detect both small and large peaks in situations where a fixed absolute (gate function) threshold would fail.

The above spectrum-based parameters can be taken from the spectrogram at various locations within each detected element:

2.2 Template spectrogram comparison (using cross-correlation) for identifying and labeling certain spectrogram patterns either continuously over the entire sound file or limited to manually or automatically detected sound events

